Simulation of additive manufacturing
In the context of additive manufacturing the group “Numerical Simulation” focuses on beam-based technologies using a powder bed. Different materials from metals and metal alloys (Ti64, TiAl, IN718) to polymers (PA12) can be applied to the software. The scientific research focuses, in close cooperation with the experimental group “Additive Manufacturing”, on the understanding of the fundamental mechanism during powder melting and material consolidation as well as on the prediction of innovative process strategies regarding porosity, microstructure and alloy concentration.
A predictive software relies on exact physical and numerical models. The most important aspect is the correct modelling of the thermal conditions. Almost all modifications of process parameters have a direct influence on heat conduction, the coupling of the energy source or heat sinks by e.g. heat radiation or evaporation. Furthermore, many material parameters are temperature dependent and sensitive to a correct model. During melting a melt pool evolves, which dynamics is mainly covered by capillarity, wetting, Marangoni convection and gravity. The temperature gradient and the solidification velocity mainly influence the final microstructure after solidification.
The 2D simulation of selective electron beam melting bases on the software for modelling of foam formation. The base software is extended by certain modules comprising the electron beam absorption, phase transitions, selective evaporation or grain structure evolution. After a careful experimental validation, the aim of this software is to predict process windows and explain process phenomena. Most process phenomena during selective electron beam melting are covered by a 2D simulation. A more realistic modelling of the melt pool dynamics and the grain structure evolution is reached by 3D simulations. Therefore, two different simulation tools for these purposes are developed at WTM. The 3D hydrodynamics software requires a massively parallel implementation, which has been developed in cooperation with the Chair of System Simulation. The melt pool dynamics and the material consolidation are investigated in full spatial dimension. Using this software, process windows for dense parts as well as innovative process strategy modifications are predicted. The grain structure evolution is modelled by a separate software, which enables the grains to grow in all possible directions during processing. Here, a macroscopic approach is used, where the powder particles are approximated by a continuum. Additionally, only the thermodynamics is modelled. With these simplifications, domains on the scale of whole parts are possible to simulate.
Besides funding from industry and DFG/EU projects, the development of the simulation software is mainly funded by the collaborative research centre SFB 814 “Additive Manufacturing” (http://www.sfb814.forschung.uni-erlangen.de/).
Contact:
Dr.-Ing. Matthias MarklPublications:
Extracting powder bed features via electron optical images during electron beam powder bed fusion
In: Additive Manufacturing Letters 10 (2024), Article No.: 100220
ISSN: 2772-3690
DOI: 10.1016/j.addlet.2024.100220 , , , , :
A thermo-mechanical model for hot cracking susceptibility in electron beam powder bed fusion of Ni-base superalloys
In: Materials & Design 237 (2024), Article No.: 112528
ISSN: 0264-1275
DOI: 10.1016/j.matdes.2023.112528 , , :
Comprehensive numerical investigation of laser powder bed fusion process conditions for bulk metallic glasses
In: Additive Manufacturing 81 (2024), Article No.: 104026
ISSN: 2214-7810
DOI: 10.1016/j.addma.2024.104026 , , :
Numerical Microstructure Prediction for Lattice Structures Manufactured by Electron Beam Powder Bed Fusion
In: Crystals 14 (2024), Article No.: 149
ISSN: 2073-4352
DOI: 10.3390/cryst14020149 , , , :
A CALPHAD-Informed Enthalpy Method for Multicomponent Alloy Systems with Phase Transitions
In: Modelling 5 (2024), p. 367-391
ISSN: 2673-3951
DOI: 10.3390/modelling5010020 , , , :
A new approach of preheating and powder sintering in electron beam powder bed fusion
In: International Journal of Advanced Manufacturing Technology (2024)
ISSN: 0268-3768
DOI: 10.1007/s00170-024-13966-1 , , , :
Modeling and Simulation of Bulk Metallic Glass Crystallization During Laser Powder Bed Fusion (Dissertation, 2024)
DOI: 10.25593/open-fau-715 :
Volume of fluid based modeling of thermocapillary flow applied to a free surface lattice Boltzmann method
In: Journal of Computational Physics 492 (2023), Article No.: 112441
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2023.112441 , , :
A Thermo-Mechanical Model for Hot Cracking Susceptibility in Electron Beam Powder Bed Fusion of Ni-Base Superalloys
In: Materials & Design 237 (2023), p. 112528
ISSN: 0264-1275
DOI: 10.1016/j.matdes.2023.112528 , , :
A return time compensation scheme for complex geometries in electron beam powder bed fusion
In: Additive Manufacturing 76 (2023), p. 103767
ISSN: 2214-7810
DOI: 10.1016/j.addma.2023.103767 , , :
Alternative Approach to Modeling of Nucleation and Remelting in Powder Bed Fusion Additive Manufacturing
In: Advanced Engineering Materials (2023)
ISSN: 1438-1656
DOI: 10.1002/adem.202201682 , , , , :
High-Throughput Numerical Investigation of Process Parameter-Melt Pool Relationships in Electron Beam Powder Bed Fusion
In: Modelling 4 (2023), p. 336-350
ISSN: 2673-3951
DOI: 10.3390/modelling4030019 , , , :
Revealing bulk metallic glass crystallization kinetics during laser powder bed fusion by a combination of experimental and numerical methods
In: Journal of Non-Crystalline Solids 619 (2023), Article No.: 122532
ISSN: 0022-3093
DOI: 10.1016/j.jnoncrysol.2023.122532 , , , , , , :
Additive manufacturing of cellular structures: Multiscale simulation and optimization
In: Journal of Manufacturing Processes 95 (2023), p. 275-290
ISSN: 1526-6125
DOI: 10.1016/j.jmapro.2023.03.071 , , , , , , , , , , :
SAMPLE3D: A versatile numerical tool for investigating texture and grain structure of materials processed by PBF processes
IVth International Conference on Simulation for Additive Manufacturing (Sim-AM 2023) (München, 26. July 2023 - 28. July 2023)
DOI: 10.23967/c.simam.2023.006 , , , , :
Predictive simulation of bulk metallic glass crystallization during laser powder bed fusion
In: Additive Manufacturing 59 (2022), Article No.: 103121
ISSN: 2214-7810
DOI: 10.1016/j.addma.2022.103121 , , :
Basic Mechanism of Surface Topography Evolution in Electron Beam Based Additive Manufacturing
In: Materials 15 (2022), Article No.: 4754
ISSN: 1996-1944
DOI: 10.3390/ma15144754 , , , :
Isothermal crystallization kinetics of an industrial-grade Zr-based bulk metallic glass
In: Journal of Non-Crystalline Solids 573 (2021), Article No.: 121145
ISSN: 0022-3093
DOI: 10.1016/j.jnoncrysol.2021.121145 , , , , , :
New grain formation mechanisms during powder bed fusion
In: Materials 14 (2021), Article No.: 3324
ISSN: 1996-1944
DOI: 10.3390/ma14123324 , , , , :
Numerical Alloy Development for Additive Manufacturing towards Reduced Cracking Susceptibility
In: Crystals 11 (2021)
ISSN: 2073-4352
DOI: 10.3390/cryst11080902 , , , :
Multi-material model for the simulation of powder bed fusion additive manufacturing
In: Computational Materials Science 194 (2021)
ISSN: 0927-0256
DOI: 10.1016/j.commatsci.2021.110415 , , , :
A multivariate meltpool stability criterion for fabrication of complex geometries in electron beam powder bed fusion
In: Additive Manufacturing 45 (2021), Article No.: 102051
ISSN: 2214-7810
DOI: 10.1016/j.addma.2021.102051 , , , :
A Novel Approach to Predict the Process-Induced Mechanical Behavior of Additively Manufactured Materials
In: Journal of Materials Engineering and Performance (2021)
ISSN: 1059-9495
DOI: 10.1007/s11665-021-05725-0 , , , , , :
Modeling laser beam absorption of metal alloys at high temperatures for selective laser melting
In: Advanced Engineering Materials 23 (2021), Article No.: 2100137
ISSN: 1438-1656
DOI: 10.1002/adem.202100137 , , , :
New grain formation by constitutional undercooling due to remelting of segregated microstructures during powder bed fusion
In: Materials 13 (2020), p. 1-14
ISSN: 1996-1944
DOI: 10.3390/ma13235517 , , , , :
Modeling and Simulation of Microstructure Evolution for Additive Manufacturing of Metals: A Critical Review
In: Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science (2020)
ISSN: 1073-5623
DOI: 10.1007/s11661-020-05946-3 , , :
Fabrication of Single Crystals through a µ-Helix Grain Selection Process during Electron Beam Metal Additive Manufacturing
In: Metals (2020)
ISSN: 2075-4701
DOI: 10.3390/met10030313 , , :
Numerical microstructure prediction by a coupled finite element cellular automaton model for selective electron beam melting
In: Computational Materials Science 162 (2019), p. 148-155
ISSN: 0927-0256
DOI: 10.1016/j.commatsci.2019.03.004 , , , , , :
3D multi-layer grain structure simulation of powder bed fusion additive manufacturing
In: Acta Materialia 152 (2018), p. 119-126
ISSN: 1359-6454
DOI: 10.1016/j.actamat.2018.04.030 , , , :
Predictive simulation of process windows for powder bed fusion additive manufacturing: Influence of the powder size distribution
In: Computers & Mathematics with Applications (2018)
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2018.06.029 , , :
Topology Optimization in Additive Manufacturing Considering the Grain Structure of Inconel 718 using Numerical Homogenization
iCAT 2018 (Maribor, 10. October 2018 - 11. October 2018)
In: Proceedings of 7th International Conference on Additive Technologies 2018 , , , , , , , , , :
3D grain growth simulation and experimental verification in laser beam melting of IN718
10th CIRP Conference on Photonic Technologies (LANE 2018) (Fürth, 4. September 2018 - 6. September 2018)
In: Procedia CIRP 74 (2018) 2018
DOI: 10.1016/j.procir.2018.08.034
URL: https://www.sciencedirect.com/science/article/pii/S2212827118308187/pdf?md5=ea85f15a94f75d82fce787e5b0a20225πd=1-s2.0-S2212827118308187-main.pdf , , , , , :
Mesoskopische Simulation des selektiven Strahlschmelzens mittels einer Lattice Boltzmann Methode mit dynamischer Gitteranpassung (Dissertation, 2018) :
Numerical simulation of multi-component evaporation during selective electron beam melting of TiAl
In: Journal of Materials Processing Technology 247 (2017), p. 280-288
ISSN: 0924-0136
DOI: 10.1016/j.jmatprotec.2017.04.016 , , , :
Additive Fertigung durch selektives Elektronenstrahlschmelzen
In: Schweissen und Schneiden (2017), p. 30-39
ISSN: 0036-7184 , , , :
Simulation of grain structure evolution during powder bed based additive manufacturing
In: Additive Manufacturing 13 (2017), p. 124-134
ISSN: 2214-7810
DOI: 10.1016/j.addma.2016.10.007 , , :
Macroscopic simulation and experimental measurement of melt pool characteristics in selective electron beam melting of Ti-6Al-4V
In: International Journal of Advanced Manufacturing Technology (2017)
ISSN: 0268-3768
DOI: 10.1007/s00170-016-8819-6
URL: http://link.springer.com/article/10.1007/s00170-016-8819-6 , , , , , :
Predictive Simulation of Process Windows for Powder Bed Fusion Additive Manufacturing: Influence of the Powder Bulk Density
In: Materials 10 (2017)
ISSN: 1996-1944
DOI: 10.3390/ma10101117 , , , , :
Additive manufacturing using selective electron beam melting
In: Welding and Cutting (2017), p. 177-184
ISSN: 1612-3433 , , , :
A multi-component evaporation model for beam melting processes
In: Modelling and Simulation in Materials Science and Engineering 25 (2017), Article No.: 025003
ISSN: 1361-651X
DOI: 10.1088/1361-651X/aa5289 , , :
Predictive numerical simulations of processing windows for powder bed based additive manufacturing
2017 Simulation for Additive Manufacturing, Sinam 2017 (Munich, 11. October 2017 - 13. October 2017)
In: Simulation for Additive Manufacturing 2017, Sinam 2017 2017 , , , , :
3D multilayer grain structure simulation for beam-based additive manufacturing
2017 Simulation for Additive Manufacturing, Sinam 2017 (Munich, DEU, 11. October 2017 - 13. October 2017)
In: Simulation for Additive Manufacturing 2017, Sinam 2017 2017 , , :
Multiscale Modeling of Powder Bed-Based Additive Manufacturing
In: Annual Review of Materials Research 46 (2016), p. 93-123
ISSN: 1531-7331
DOI: 10.1146/annurev-matsci-070115-032158 , :
A coupled Cellular Automaton–Lattice Boltzmann model for grain structure simulation during additive manufacturing
In: Computational Materials Science 124 (2016), p. 37-48
ISSN: 0927-0256
DOI: 10.1016/j.commatsci.2016.07.005 , , :
Numerical Investigations of Selective Electron Beam Melting on the Powder Scale
Fraunhofer Direct Digital Manufacturing Conference 2016 (Berlin, 16. March 2016 - 17. March 2016)
In: Proceedings of the Fraunhofer Direct Digital Manufacturing Conference 2016 2016 , , , :
3D Grain Structure Simulation for Beam-Based Additive Manufacturing
6th International Conference on Additive Technologies iCAT (Nürnberg, 29. November 2017 - 30. November 2016)
In: Proceedings of the 6th International Conference on Additive Technologies iCAT 2016 2016 , , , :
Numerical investigations on hatching process strategies for powder-bed-based additive manufacturing using an electron beam
In: International Journal of Advanced Manufacturing Technology 78 (2015), p. 239-247
ISSN: 0268-3768
DOI: 10.1007/s00170-014-6594-9
URL: http://link.springer.com/article/10.1007/s00170-014-6594-9 , , , :
Free surface Neumann boundary condition for the advection-diffusion lattice Boltzmann method
In: Journal of Computational Physics 301 (2015), p. 230-246
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2015.08.033 , :
Numerische Modellierung und Simulation des selektiven Elektronenstrahlschmelzens basierend auf einer gekoppelten Gitter Boltzmann und Diskrete Element Methode (Dissertation, 2015) :
Validation Experiments for LBM Simulations of Electron Beam Melting
In: International Journal of Modern Physics C (2014), p. 1-9
ISSN: 0129-1831
DOI: 10.1142/S0129183114410095
URL: http://arxiv.org/pdf/1402.2440.pdf , , , , :
Defect generation and propagation mechanism during additive manufacturing by selective beam melting
In: Journal of Materials Processing Technology 214 (2014), p. 2522-2528
ISSN: 0924-0136
DOI: 10.1016/j.jmatprotec.2014.05.002 , , :
Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods
In: Journal of Physics D: Applied Physics 47 (2014), Article No.: 275303
ISSN: 0022-3727
DOI: 10.1088/0022-3727/47/27/275303 , , :
Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method
In: Computers & Mathematics with Applications 67 (2014), p. 318-330
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2013.10.001
URL: http://www.sciencedirect.com/science/article/pii/S0898122113005944 , , , , :
Modelling of electron beam absorption in complex geometries
In: Journal of Physics D-Applied Physics 47 (2014), Article No.: 065307
ISSN: 0022-3727
DOI: 10.1088/0022-3727/47/6/065307 , , :
A Python extension for the massively parallel framework waLBerla
4th Workshop on Python for High Performance and Scientific Computing (New Orleans, 17. November 2014 - 17. November 2014)
In: online 2014
URL: http://www.dlr.de/sc/Portaldata/15/Resources/dokumente/pyhpc2014/submissions/pyhpc2014_submission_5.pdf , , , , , , :
Fundamental consolidation mechanisms during selective beam melting of powders
In: Modelling and Simulation in Materials Science and Engineering 21 (2013), Article No.: 085011
ISSN: 0965-0393
DOI: 10.1088/0965-0393/21/8/085011 , , :
Electron beam absorption algorithms for electron beam melting processes simulated by a three-dimensional thermal free surface lattice Boltzmann method in a distributed and parallel environment
In: Procedia Computer Science 18 (2013), p. 2127-2136
ISSN: 1877-0509
DOI: 10.1016/j.procs.2013.05.383
URL: http://www.sciencedirect.com/science/article/pii/S1877050913005267 , , , , :
Observation and numerical simulation of melt pool dynamic and beam powder interaction during selective electron beam melting
23rd Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2012 (Austin, TX)
URL: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84889688177&origin=inward , , , :
Mesoscopic simulation of selective beam melting processes
In: Journal of Materials Processing Technology 211 (2011), p. 978-987
ISSN: 0924-0136
DOI: 10.1016/j.jmatprotec.2010.12.016 , , :
Lattice Boltzmann model for thermal free surface flows with liquid-solid phase transition
In: International Journal of Heat and Fluid Flow 32 (2011), p. 156-163
ISSN: 0142-727X
DOI: 10.1016/j.ijheatfluidflow.2010.09.006 , :
Simulation of Selective Electron Beam Melting Process (Dissertation, 2011) :
Lattice Boltzmann method for dynamic wetting problems
In: Journal of Colloid and Interface Science 335 (2009), p. 84-93
ISSN: 0021-9797
DOI: 10.1016/j.jcis.2009.02.055 , :
Progress in electron beam additive manufacturing
In: Progress in Additive Manufacturing (2024)
ISSN: 2363-9512
DOI: 10.1007/s40964-024-00679-w , , :
Effect of scanning strategies on grain structure and texture of additively manufactured lattice struts: A numerical exploration
In: Advanced Engineering Materials (2024)
ISSN: 1438-1656
DOI: 10.1002/adem.202400661 , , , :
Graph-based spot melting sequence for electron beam powder bed fusion
In: Additive Manufacturing 91 (2024), Article No.: 104321
ISSN: 2214-7810
DOI: 10.1016/j.addma.2024.104321 , , :
Multiple interaction electron beam powder bed fusion for controlling melt pool dynamics and improving surface quality
In: Additive Manufacturing 90 (2024), Article No.: 104316
ISSN: 2214-7810
DOI: 10.1016/j.addma.2024.104316 , , :
A Scan Strategy Based Compensation of Cumulative Heating Effects in Electron Beam Powder Bed Fusion
In: Progress in Additive Manufacturing (2024)
ISSN: 2363-9512
DOI: 10.1007/s40964-024-00807-6 , , :